Abstract

In this article we investigate numerically the spectrum of some representative examples of discrete one-dimensional Schrodinger operators with quasi-periodic potential in terms of a perturbative constant b and the spectral parameter a. Our examples include the well-known Almost Mathieu model, other trigonometric potentials with a single quasi-periodic frequency and generalisations with two and three frequencies. We computed numerically the rotation number and the Lyapunov exponent to detect open and collapsed gaps, resonance tongues and the measure of the spectrum. We found that the case with one frequency was significantly different from the case of several frequencies because the latter has all gaps collapsed for a sufficiently large value of the perturbative constant and thus the spectrum is a single spectral band with positive Lyapunov exponent. In contrast, in the cases with one frequency considered, gaps are always dense in the spectrum, although some gaps may collapse either for a single value of the perturbative constant or for a range of values. In all cases we found that there is a curve in the (a, b)-plane which separates the regions where the Lyapunov exponent is zero in the spectrum and where it is positive. Along this curve, which is b = 2 in the Almost Mathieu case, the measure of the spectrum is zero.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call