Abstract

The 14N(p, \gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p, \alpha \gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p, \gamma)15O and 15N(p, \alpha \gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p, \gamma)15O and at Ep = 897 and 430 keV in 15N(p, \alpha \gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p, \gamma)15O. The new recommended values are \omega \gamma = 0.353$\pm$0.018, 362$\pm$20, and 21.9$\pm$1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p, \gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the 14N(p, \gamma)15O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in 15N(p, \alpha \gamma)12C may be useful for hydrogen depth profiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.