Abstract

Herein, the ab initio method is applied to examine metastable molecular excited states on a solid surface using resonance state theory and Green's function. A formula for the complex energy correction that determines the decay rate is presented; the configuration interaction effect together with major molecule-surface interactions are considered in more detail as compared to previous studies. Furthermore, the lifetimes of the excited states of Ru-terpyridine dyes adsorbed on an anatase surface are calculated, and the effects of the molecular structure and adsorption mode on the electron injection rate are studied. Also, the adsorption structures and relative stabilities of a series of Ru-terpyridine dyes-including the black dye-are reported. An implicit solvation model is necessary to reliably calculate the alignment between the photoabsorption spectrum and the conduction band density of states, governing the injection rate. Finally, some of the factors that limit the injection ability of dyes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call