Abstract

We have fabricated three-dimensional (3D) photonic quantum ring lasers with an equilateral triangle microcavity. Their spectra were well explained by combining the off-normal resonance and hexagonally bounced in-plane whispering-gallery-mode condition. The angular distribution of the emission modes and their discrete wavelengths were shown to be in excellent agreement with a 3D Rayleigh Fabry-Perot model. We confirmed that the allowed modes in the equilateral triangle microcavity decrease by decreasing the length of equilateral triangle side, L, and the spectral mode spacing linearly increases with the mode index m and is inversely proportional to L2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.