Abstract
Cardiovascular disease is the leading cause of death worldwide. Existing methods for continuous, noninvasive blood pressure (BP) monitoring suffer from poor accuracy, uncomfortable form factors, or a need for frequent calibration, limiting their adoption. We introduce a new framework for continuous BP measurement that is noninvasive and calibration-free called resonance sonomanometry. The method uses ultrasound imaging to measure both the arterial dimensions and artery wall resonances that are induced by acoustic stimulation, which offers a direct measure of BP by a fully determined physical model. The approach and model are validated in vitro using arterial mock-ups and then in multiple arteries in human subjects. This approach offers the promise of robust continuous BP measurements, providing significant benefits for early diagnosis and treatment of cardiovascular disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.