Abstract

This paper studies the vibration absorber for a fluid-conveying pipe, where the lever-type nonlinear energy sink (LNES) and spring supports are coupled to the asymmetric ends of the system. The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically. Meanwhile, the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method. Moreover, a special response, called the collapsible closed detached response (CCDR), is first observed when the vibration response of mechanical structures is studied. Then, the relationship between the CCDR and the main structure primary response (PR) is obtained. In addition, the closed detached response (CDR) is also observed to research the resonance response of the fluid-conveying pipe. The appearance of either the CCDR or the CDR does affect the resonance attenuation. Furthermore, the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual. Besides, the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink (NES) coupled to the same pipe system. It is found that the LNES can reduce the resonance response amplitude by 91.33%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call