Abstract

The dynamic interaction of a moving train over a series of railway bridges with equal spans can result in a coupled vibration problem of wave transmission between two periodic structures. Dual resonance occurs when both systems vibrate in phase and the train travels at a resonant speed. The objectives of this paper are to (1) develop an active pitching resonator (APR) to attenuate resonance waves in a train; (2) study the dispersion relation for pitching motion control of periodically linked train cars; (3) investigate the key parameters that affect the dispersion band gaps of wave attenuation in a train; (4) present an active vibration cancellation method to enhance the control performance of the APR; and (5) demonstrate the effectiveness of using the optimal APRs to reduce resonance of a moving train. Through dispersion analysis, the optimum APR can not only shift the target frequency level away from resonance of a moving train, but also create a wide resonance band gap to reduce wave transmission in the train. Finally, the effectiveness of the optimum APR unit in reducing the resonance and attenuating the waves of a train travelling over multiple-span simple beams is demonstrated by dynamic finite element analysis of the train-bridge interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.