Abstract

In dilute phosphoric acid solution, cadmium (II) reacts with a large excess of I- to form [CdI4]2- which reacts further with basic triphenylmethane dyes such as crystal violet (CV), ethyl violet (EV), methyl violet (MV), brilliant green (BG) or malachite green (MG) to form an ion-association complex. This results in a significant enhancement of resonance Rayleigh scattering (RRS) intensity and the appearance of new RRS spectra. The characteristics of RRS spectra of the ion-association complexes, the influencing factors and the optimum conditions of these reactions have been investigated. The intensity of RRS is directly proportional to the concentration of cadmium from 0 to 60 ng mL(-1) for EV and MV systems, 0 to 80 ng mL(-1) for CV system, and 0 to 100 ng mL(-1) for BG and MG systems. The methods exhibit high sensitivities and the detection limits for cadmium are between 0.35 and 2.00 ng mL(-1) depending on the different reaction systems. The new RRS method was applied to the direct determination of traces of cadmium in pure zinc and synthetic water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call