Abstract
The oxidized and semiquinone anion radical forms of flavin mononucleotide carried by flavocytochrome b2 and L-lactate monooxygenase have been studied by resonance Raman (RR) spectroscopy. The RR spectra of their oxidized forms are compared with previously published RR data on various flavins and flavoproteins. Taking as a support available X-ray crystallographic data on flavoproteins, we have found correlations between the frequencies of RR bands II (1575-1588 cm-1), III (1534-1557 cm-1), and X (1244-1266 cm-1) and the H-bonding environment and/or the structure of the flavin ring. The present RR data provide strong evidence that the electron density, the conformation, and the H-bonding environment of the oxidized flavin mononucleotide of flavocytochrome b2 and L-lactate monooxygenase are different. As far as the anionic semiquinone form of flavoproteins is concerned, the behavior of two bands observed at 1280-1300 and 1320-1350 cm-1 suggests that they have vibrational origins similar to those of RR bands II and III of oxidized compounds. On this basis, the differences in conformation and H-bonding environment of the isoalloxazine ring, observed for the oxidized form of flavocytochrome b2 and L-lactate monooxygenase, appear to be preserved upon one-electron reduction of the flavin. For both flavoproteins, the RR spectra of the semiquinone form are affected by pyruvate binding. The data are interpreted in the frame of a change in H-bonding interaction of the C4&dbd;O carbonyl group of the flavin without significant alteration of the isoalloxazine conformation. This modification in electrostatic interaction quantitatively accounts for the pyruvate-induced changes of the oxidized/semiquinone and semiquinone/reduced redox potentials of the flavoproteins. Considering the high homology in the flavin catalytic sites of flavocytochrome b2 and L-lactate monooxygenase, the observed differences in H-bonding environment and conformation of the FMN ring are related to the different biological functions of the two flavoproteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.