Abstract

Human tyrosine hydroxylase isoform 1 (hTH1) was expressed in Escherichia coli, purified as the apoenzyme, and reconstituted with iron. The resonance Raman spectra of hTH1 complexed with dopamine, noradrenaline, tyramine, and catechol have been studied and compared to those obtained for TH isolated from bovine adrenal glands or rat phaeochromocytoma tissue. A TH-phenolate complex is reported for the first time. Using dopamine selectively 18O-labeled in the 3-position or both 3- and 4-hydroxy positions, we have been able to assign unambiguously the origin of the low-frequency vibration bands: the band at 631 cm-1 involves the oxygen in the 4-position; the band at 592 cm-1 involves the oxygen in the 3-position, and the band around 528 cm-1 is shifted by both, suggesting a chelated mode vibration. A small shift of the 1275 cm-1 band and no shift of the 1320 cm-1 band were observed, showing that those two bands involve essentially ring vibrations of the catecholate moiety, rather than the C--O stretching vibration as previously suggested. The spectrum of the catechol-d6-hTH1 complex confirms this assignment. The resonance Raman spectra of the 54Fe, 56Fe, or 57Fe isotope-containing enzymes complexed with dopamine are virtually identical, showing that the component of the iron in the approximately 600 cm-1 vibrations is too small to be observed. These results provide a better understanding of the Raman properties of iron-catecholate complexes in this enzyme, as well as in other metalloproteins and model compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.