Abstract

We report resonance Raman spectra of individual porphyrin nanotubular aggregates of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) deposited on glass. Using a novel internal/external standard method, we show that absolute Raman cross sections of low-frequency vibrational modes are greatly enhanced by J-band excitation. We report single-aggregate resonance Raman spectra obtained without surface enhancement. Variations in the relative intensities of low- and high-frequency Raman modes of different aggregates and images of the resonance light scattering in epi-illumination reveal variations in aggregate structure and allow the possible correlation between Raman intensity and coherence to be explored. Polarized Raman spectra of individual aggregates confirm that the J-band is a composite of two closely spaced vibronically coupled transitions polarized parallel and perpendicular to the long axis of the aggregate, in accordance with our structural model of a hierarchical helical nanotube. The evolution of the Raman spectrum of a single aggregate during laser heating reveals the role of water in the assembly of structural subunits. Our experimental results provide insight into the concept of aggregation-enhanced Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call