Abstract

Resonance Raman spectra of recombinant human green and red cone pigments have been obtained to examine the molecular mechanism of color recognition by visual pigments. Spectra were acquired using a 77 K resonance Raman microprobe or preresonance Raman spectroscopy. The vibrational bands were assigned by comparison to the spectra of bovine rhodopsin and model compounds. The C=NH stretching frequencies of rhodopsin, the green cone pigment, and the red cone pigment in H2O (D2O) are found at 1656 (1623), 1640 (1618), and 1644 cm(-1), respectively. Together with previous resonance Raman studies on iodopsin [Lin, S. W., Imamoto, Y., Fukada, Y., Shichida, Y., Yoshizawa, T., & Mathies, R. A. (1994) Biochemistry 33, 2151-2160], these values suggest that red and green pigments have very similar Schiff base environments, while the Schiff base group in rhodopsin is more strongly hydrogen-bonded to its protein environment. The absence of significant frequency and intensity differences of modes in the fingerprint and the hydrogen out-of-plane wagging regions for all these pigments does not support the hypothesis that local chromophore interactions with charged protein residues and/or chromophore planarization are crucial for the absorption differences among these pigments. However, our data are consistent with the idea that the Schiff base group in blue visual pigments is stabilized by protein and water dipoles and that the removal of this dipolar field shifts the absorption maximum from blue to green. A further red shift of the lambda(max) from the green to the red pigment is successfully modeled by the addition of hydroxyl-bearing amino acids (Ser164, Tyr261, and Thr269) close to the ionone ring that lower the transition energy by interacting with the change of dipole moment of the chromophore upon excitation. The increased hydrogen bonding of the protonated Schiff base group in rhodopsin is predicted to account for the 30 nm blue shift of its absorption maximum compared to that of the green pigment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.