Abstract

Resonance Raman data are reported for the redox-activated form of galactose oxidase from Dactylium dendroides. Excitation within the red (659 nm) and blue (457.9 nm) absorption bands leads to strong resonance enhancement of ligated tyrosine vibrational modes at 550, 1170, 1247, 1484, and 1595 cm-1. The ring mode frequencies are unusually low, indicating a decreased bond order in the ring. The spectra clearly differ in both frequencies and relative intensities from those characteristic of known aromatic pi-radicals. Enhancement of tyrosine ring modes on excitation within absorption bands previously associated with the presence of the radical in the active site suggests that the ligated tyrosine residue is present in the radical site and may stabilize this radical species through formation of a charge transfer complex. A dramatically different Raman spectrum is observed for the N3- adduct of galactose oxidase, exhibiting a single strong 1483 cm-1 feature. The intense visible-near IR absorption bands for galactose oxidase may derive from transitions within a charge transfer complex between an aromatic free radical and a tyrosine-copper complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.