Abstract
The resonance properties of surface plasmon in the AMM/dielectric/AMM waveguide are theoretically studied by using the finite-difference time-domain technique, where the claddings are anisotropic metamaterial (AMM) . From the dispersion relation, it is found that the AMM/dielectric/AMM waveguide supports TE polarized surface plasmon if AMM is always-cutoff with negative permeability. The wavelength of the surface plasmon becomes shorter when both the thickness of the dielectric core and the magnetic plasma frequency of AMM decrease. For an AMM/dielectric/AMM waveguide with a finite length, a subwavelength plasmon microcavity can be formed by Fabry-Perot resonance caused by the reflection of the guided mode at the entrance and the exit surfaces. At the resonant frequency, the electric field is maximized in the center, the magnetic field is maximized at the dielectric core entrance and exit, and the electromagnetic energy is strongly concentrated around the dielectric core. Such electromagnetic properties will have potential applications in the tunable subwavelength microcavity with strongly localized field and in the cavity quantum electrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.