Abstract

Theory of specular light reflection from long-period quantum-well structures taking into account the exciton contribution to dielectric polarization has been developed for an arbitrary relation between the background refractive index in the well, n a, and barrier-material refractive index nb. General expressions for the optical reflection and transmission coefficients for a structure with N equidistant quantum wells are derived with the use of the Green’s function and transfer matrix methods. Normal and oblique light reflectance spectra from II-VI-based heterostructures were found to reveal a bright interference pattern caused by the difference between n a and n b. A comparison of the theory with experiment has yielded the dispersion of n a and n b within a broad wavelength range and the parameters of the quasi-two-dimensional heavyhole exciton (e1-hh1), namely, the resonant frequency and the radiative and nonradiative damping rates. Reflectance spectra from resonant Bragg and quasi-Bragg structures with real exciton parameters are calculated, and the effect on these spectra of the refractive-index difference and the deviation from the Bragg condition is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call