Abstract

Electromagnetic metamaterials (MMs) consisting of highly conducting sub-wavelength metallic resonators enable many unusual electromagnetic properties at user defined frequencies which are not permissible with the naturally occurring materials [1, 2]. Generally the electromagnetic properties of metamaterials are controlled by the design variation of the MM unit cell, often termed as meta-molecule, consisting of single or multiple metallic split ring resonators (SRRs). These metallic resonators are quite often termed as meta-atoms too. The near field electromagnetic coupling between these meta-atoms exhibits an important role in modulating the fundamental resonances of the metamaterials [3–5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.