Abstract

Stereometamaerials can fully utilize the 3D degrees of freedom to exploit the coupling and hybridization between multiple split ring resonators (SRRs), enabling more extraordinary resonances and properties over their planar counterparts. Here we propose and numerically study a kind of structure based on connected SRRs sharing their gap in a rotational fashion. It is shown that there are three typical resonance modes in such cage-like SRR (C-SRR) stereometamaterial in the communication and near infrared range. In the order of increasing energy, these modes can be essentially ascribed to magnetic torodial dipole, magnetic dipole, and a mixture of electric-dipole and magnetic toroidal dipole. We show that the latter two are derived from the second-order mode in the corresponding individual SRR, while the first one from the fundamental one. The highest energy mode remains relatively "dark" in an individual C-SRR due to the high-order feature and the rotational symmetry. However, they are all easily excitable in a C-SRR array, offering multiband filtering functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.