Abstract

Resonance ionization mass spectrometry offers extremely high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Measured isotope ratios are sensitive to small fluctuations in the pointing, pulse timing, and wavelength of the resonance lasers. We show that, by minimizing these fluctuations using feedback controls and by power-broadening the optical transitions, we are able to measure chromium isotope ratios with statistics-limited precision better than 1%. Small additional improvements in reproducibility come from careful shaping of the electric field in the region where atoms are photoionized and from minimizing pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel. The increased reproducibility of isotopic measurements on standard materials has enabled us to detect anomalous chromium isotopic abundances in presolar SiC grains extracted from primitive meteorites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.