Abstract

A theory of resonance conversion (RC) is presented. It is shown that by resonance conversion being a natural extension of traditional internal conversion, into the subthreshold domain, in a number of cases, it strongly affects nuclear de-excitation. Moreover, as it concentrates transition strength in narrow bands corresponding to atomic spectral lines, it is a unique tool for accelerating nuclear processes. Along with the wellknown process of non-radiative nuclear excitation through electron NEET transition and the inverse RC process, resonance conversion provides convenient mathematics for a number of crossing-invariant processes involving a nucleus and electrons, excitation and de-excitation of nuclei, by a hyperfine magnetic field, spin mixing of nuclear states via an electron shell, a hyperfine interaction and magnetic anomalies in an atomic spectra, and the excitation of nuclei in collisions accompanied by the ionization of an electron shell, in muon decay in the orbit, etc. Mechanisms of isomer pumping via a laser-radiation-induced RC and of isomer energy triggering in a resonance laser radiation field are considered. An especially strong effect can be obtained in hydrogen-like ions, with practically no RC damping. The theory is also generalized to the case of discrete Auger transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.