Abstract
Delocalization by resonance between contributing structures explains the enhanced stability of resonance-hybrid molecules. Here we report the realization of resonance-hybrid states in a few-electron triple quantum dot (TQD) obseved by excitation spectroscopy. The stabilization of the resonance-hybrid state and the bond between contributing states are achieved through access to the intermediate states with double occupancy of the dots. This explains why the energy of the hybridized singlet state is significantly lower than that of the triplet state. The properties of the three-electron doublet states can also be understood with the resonance-hybrid picture and geometrical phase. As well as for fundamental TQD physics, our results are useful for the investigation of materials such as quantum dot arrays, quantum information processors, and chemical reaction and quantum simulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.