Abstract

A fullerene G is a 3 -regular plane graph consisting only of pentagonal and hexagonal faces. The resonance graph R ( G ) of G reflects the structure of its perfect matchings. The Zhang-Zhang polynomial of a fullerene is a counting polynomial of resonant structures called Clar covers. The cube polynomial is a counting polynomial of induced hypercubes in a graph. In the present paper we show that the resonance graph of every fullerene is bipartite and each connected component has girth 4 or is a path. Also, the equivalence of the Zhang-Zhang polynomial of a fullerene and the cube polynomial of its resonance graph is established. Furthermore, it is shown that every subgraph of the resonance graph isomorphic to a hypercube is an induced subgraph in the resonance graph. For benzenoid systems and tubulenes each connected component of the resonance graph is the covering graph of a distributive lattice; for fullerenes this is not true, as we show with an example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call