Abstract

Single photon sources, which are compatible with quantum memories, are important components of quantum networks. In this article, we show optical investigations on isolated GaAs/Al0.25Ga0.75As quantum dots grown via droplet epitaxy, which emit single photons on resonance with the Rb-87-D2 line (780 nm). Under continuous wave resonant excitation conditions, we observe bright, clean, and narrowband resonance fluorescence emission from such a droplet quantum dot. Furthermore, the second-order correlation measurement clearly demonstrates the single photon emission from this resonantly driven transition. Spectrally resolved resonance fluorescence of a similar quantum dot yields a linewidth as narrow as 660 MHz (2.7 μeV), which corresponds to a coherence time of 0.482 ns. The observed linewidth is the smallest reported so far for strain free GaAs quantum dots grown via the droplet method. We believe that this single photon source can be a prime candidate for applications in optical quantum networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.