Abstract

Using the non-equilibrium statistical operator (NSO) method, we have investigated the spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure. We have analyzed the effective parameters approximation, when each of the considered subsystems (conduction electrons, magnons, and phonons) is characterized by its effective temperature. We have constructed the macroscopic equations describing the spin-wave current caused by both the resonantly exciting spin subsystem of conduction electrons and an inhomogeneous temperature field in the ferromagnetic insulator. We have shown that the spin-wave current excitation under combined resonance conditions exhibits a resonant nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.