Abstract

The molybdenum center of xanthine oxidase has been examined by resonance Raman spectroscopy. Making use of the long-wavelength absorption of the reduced molybdenum center in complex with violapterin (the product of enzymic action of lumazine), resonance Raman spectra were obtained using laser excitation at 676.4 nm. Several internal vibrational modes of violapterin were found to be resonance-enhanced, and a number of bands in the 250-1100 cm-1 range, presumably arising from vibrational modes of the molybdenum coordination sphere, were also observed. Upon substitution of 18O for 16O in the molybdenum coordination sphere, bands at 1469, 853, 517, 325, and 276 cm-1 exhibited shifts of 5-12 cm-1 to lower energy. By analogy to previous vibrational studies of Mo-O-Mo and Mo-O-R model compounds, the 853, 517, and 276 cm-1 frequencies were judged consistent with a labeled Mo-O-R linkage of the complexed violapterin. More importantly, the relatively small frequency shifts observed in these and other vibrations upon incorporation of 18O are very similar to those observed by others for 18O-labeled phenol and metal-phenolate complexes (Pinchas, S., Sadeh, D., and Samuel, D. (1965) J. Phys. Chem. 69, 2259-2264; Pyrz, W. J., Rue, L. A., Stern, L. J., and Que, L. J., Jr. (1985) J. Am. Chem. Soc. 107, 614-620) that model iron-tyrosinate proteins. The relatively small isotope-induced frequency shifts in multiple bands are thus interpreted as resulting from vibrational mixing of internal coordinates involving the oxygen atom with internal ring motions of the aromatic species. No oxygen isotope-sensitive bands were observed in the 900-1100 cm-1 region where Mo = O stretching modes typically occur. In agreement with the conclusions of previous workers (Davis, M.D., Olson, J. S., and Palmer, G. (1982) J. Biol. Chem. 257, 14730-14737) we interpret our results to indicate that the absorption band appearing upon complexation of violapterin with the molybdenum center of reduced xanthine oxidase is a molybdenum-to-violapterin charge-transfer band. These results, as well as several other lines of evidence, are consistent with direct coordination of violapterin to molybdenum in the charge-transfer complex via the 7-hydroxyl group (i.e. the hydroxyl group introduced into substrate by the enzyme). The Mo=O stretching mode of the complex is presumably not resonance enhanced because it is orthogonal to the charge-transfer electronic transition, suggesting that coordination of violapterin is cis to the oxo group.(ABSTRACT TRUNCATED AT 400 WORDS)

Highlights

  • From the SDepartment of Chemistry and the LASER Laboratory, the

  • The molybdenum center of xanthine oxidase has been examined by resonance Raman spectroscopy

  • The relatively small frequency shifts observed in these and other vibrations upon incorporation of “0 are very similar to those observed by others for ‘80-labeled phenol and metal-phenolate complexes (Pinchas, S., Sadeh, D., and Samuel, D. (1965) J

Read more

Summary

Introduction

From the SDepartment of Chemistry and the LASER Laboratory, the Making use of the long-wavelength absorption of the reduced molybdenum center in complex with violapterin (the product of enzymic action of lumazine), resonance Raman spectra were obtained using laser excitation at

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.