Abstract

This paper reports on a novel impedance-based cytometer, which can detect and characterize sub-micrometer particles and cells passing through a microfluidic channel. The cytometer incorporates a resonator, which is constructed by means of a discrete inductor in series with the measurement electrodes in the microfluidic channel. The use of a resonator increases the sensitivity of the system in comparison to state-of-the-art devices. We demonstrate the functionality and sensitivity of the cytometer by discriminating E. coli and B. subtilis from beads of similar sizes by means of the resonance-enhanced phase shift of the current through the microfluidic channel. The phase shift can be correlated to size and dielectric properties of the measured objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.