Abstract

The multiple scattering model of a quantum particle in a random Lorentz gas consisting of fixed point scatterers is considered in arbitrary dimension. An efficient method is developed to numerically compute the map of the density of scattering resonances in the complex plane of the wavenumber without finding them one by one. The method is applied to two collision models for the individual scatterers, namely a resonant model, and a non-resonant hard-sphere model. The results obtained with the former are compared to the literature. In particular, the spiral arms surrounding the single-scatterer resonance are identified as proximity resonances. Moreover, the hard-sphere model is used to reveal previously unknown structures in the resonance density. Finally, it is shown how Anderson localization affects the distribution of resonance widths, especially in the one-dimensional case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.