Abstract

Due to their optical magnetic and electric resonances associated with the high refractive index, dielectric silicon nanoparticles have been explored as novel nanocavities that are excellent candidates for enhancing various light-matter interactions at the nanoscale. Here, from both of theoretical and experimental aspects, we explored resonance coupling between excitons and magnetic/electric resonances in heterostructures composed of the silicon nanoparticle coated with a molecular J-aggregate shell. The resonance coupling was originated from coherent energy transfer between the exciton and magnetic/electric modes, which was manifested by quenching dips on the scattering spectrum due to formation of hybrid modes. The influences of various parameters, including the molecular oscillation strength, molecular absorption line width, molecular shell thickness, refractive index of the surrounding environment, and separation between the core and shell, on the resonance coupling behaviors were scrutinized. In particular, the resonance coupling can approach the strong coupling regime by choosing appropriate molecular parameters, where an anticrossing behavior with a mode splitting of 100 meV was observed on the energy diagram. Most interestingly, the hybrid modes in such dielectric heterostructure can exhibit unidirectional light scattering behaviors, which cannot be achieved by those in plexcitonic nanoparticle composed of a metal nanoparticle core and a molecular shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.