Abstract
AbstractOf particular interest for radio and hard X‐ray diagnostics of accelerated electrons during solar flares is the understanding of the basic nonlinear mechanisms regulating the relaxation of electron beams propagating in turbulent plasmas. In this work, it is shown that in addition to scattering of beam electrons, scattering of the beam‐generated Langmuir waves via for instance mode coupling can also result in broadening of the wave‐particle resonance. We obtain a resonance‐broadened version of weak turbulence theory with mode coupling to ion sound modes. Resonance broadening is presented here as a unified framework which can quantitatively account for the reduction and possible suppression of the beam instability due to background scattering of the beam electrons themselves or due to scattering of the beam‐generated Langmuir waves in fluctuating plasmas. Resonance broadening being essentially equivalent to smoothing of the electron phase space distribution is used to construct an intuitive physical picture for the stability of inverted populations of fast electrons that are commonly observed in situ to propagate in the solar wind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.