Abstract

Varying the rotational speed of the main rotor is one method being considered to improve the performance of future rotorcraft. However, changes in rotor speeds often lead to resonant interactions between rotor blade modes and the rotor's excitation frequencies which increase the vibratory loads in the rotor. This research investigates the use of a compressive load to reduce a blade's natural frequencies and its potential to be used as a resonance avoidance technique by improving separation between the natural and excitation frequencies of a blade. The research presented herein describes and validates a model of a pretwisted rotating beam with non-coincident mass and elastic axes with an applied compressive load. The compressive load is applied at the elastic axis at the tip of the beam and is orientated towards the root of the beam. The beam model is then used in a case study to represent the rotor blade of a typical mid-sized civilian helicopter. The case study is performed to calculate the natural frequencies of a compressed blade for a reduction in rotor speed of up to 40% and evaluate the performance of the compressive load resonance avoidance technique. The results of the case study show that the compressive load improves the separation between natural and excitation frequencies over the full range of rotor speeds evaluated. The improved separation allows the rotor to operate safely with a reduction in rotor speed of up to 19%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.