Abstract

The cellulosome of Clostridium thermocellum is an elegant and efficient multi-enzyme complex for degrading lignocellulose. The cellulosome contains several dozens of carbohydrate hydrolysis enzymes, which are regulated by the presence of environmental substrates through several pairs of sigma and anti-sigma factors. The anti-sigma factors sense the presence of substrates and transduce the signals into the cell. The sigma factors are then released from the corresponding anti-sigma factors, and they recruit RNA polymerase to transcribe specific cellulosomal genes. However, it is not clear how the extracellular signals are transduced into the cell by the anti-sigma factors. The anti-sigma factors of C. thermocellum contain an N-terminal intracellular domain, a trans-membrane helix, a periplasmic domain, a proline-rich region which is probably required for crossing the cell wall, and a C-terminal carbohydrate-binding domain or glycoside hydrolase domain. The periplasmic domain may play a key role in signal transduction; however, its three-dimensional structure is still unknown. Here we report the NMR resonance assignments of the periplasmic domain of anti-sigma factor RsgI2 from C. thermocellum as a basis for further structural determination and functional studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.