Abstract

Single-stranded DNA (ssDNA)-binding proteins (SSBs) are essential for DNA replication, recombination, and repair processes in all organisms. Sulfolobus solfataricus (S. solfataricus), a hyperthermophilic species, overexpresses its SSB (S. solfataricus SSB (SsoSSB)) to protect ssDNA during DNA metabolisms. Even though the crystal structure of apo SsoSSB and its ssDNA-bound solution structure have been reported at room temperature, structural information at high temperature is not yet available. To find out how SsoSSB maintains its structure and ssDNA binding affinity at high temperatures, we performed multidimensional NMR experiments for SsoSSB at 323K. In this study, we present the backbone and side chain chemical shifts and predict the secondary structure of SsoSSB from the chemical shifts. We found that SsoSSB is ordered, even at high temperatures, and has the same fold at high temperature as at room temperature. Our data will help improve structural analyses and our understanding of the features of thermophilic proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call