Abstract

The mechanism of the gas-phase halogen-exchange reaction between boron- and aluminum-halides (i.e., BX3 + BX3 and AlX3 + AlX3, X = F, Cl, or Br) was discovered using density functional theory. The reaction takes place via a two-step mechanism with the intermediacy of a diamond-core structure analogous to diborane. Good agreement was found between the simulated reaction features and experimental observations, which demonstrate slow kinetics and an equilibrium process for boron species and dimer formation in the case of aluminum-halides. This computational and theoretical study also reveals and quantifies the effect of resonance on the thermodynamic stability of the central intermediate and conceptualizes the extreme stability difference (∼50kcal mol-1) between boron and aluminum diamond-core bridge structures. Through an interaction energy decomposition analysis in combination with electronic structure analyses, we revealed that, beyond the resonance stabilization in free boron-halides, superior electrostatics in aluminum-halides results in the different reactivities, i.e., dimer formation for the latter species whereas substituent exchange for the former ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.