Abstract
In this paper, the forced resonance vibration analysis of curved micro-size beams made of graphene nanoplatelets (GNPs) reinforced polymer composites is presented. The approximating of the effective material properties is on the basis of Halpin–Tsai model and a modified rule of mixture. The Timoshenko beam theory is applied to describe the displacement field for the microbeam. To incorporate small-size effects, the modified strain gradient theory, possessing three independent length scale coefficients, is employed. Hamilton principle is applied to formulate the size-dependent governing motion equations, which then is solved by Navier solution method. Ultimately, the influences of length scale coefficients, opening angle, weight fraction and the total number of layers in GNPs on composite curved microbeams corresponding to different GNPs distribution are discussed in detail through parametric studies. It is shown that, the resonance position is significantly affected by changing these parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.