Abstract

Abstract A computer-driven, swept-frequency measurement technique is developed on the basis of resonance birefringence acoustoelasticity to evaluate the stresses in thin plates. The resonance frequency depends on the thickness and the elastic wave velocity; they change with stress because of the Poisson effect and the acoustoelastic effect. The resonance frequency is obtained from the spectral response curve in the electric impedance of the piezoelectric transducer. The frequency displacement induced by acoustically coupling the transducer can be minimized by employing the resonance peak closest to the transducer fundamental frequency. To illustrate the method, the residual stress is measured in butt-welded aluminum alloy plates and is compared with the results of conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.