Abstract

Nanoelectronic memory based on trapped charge need to be small and fast, but fundamentally it faces a voltage-time dilemma because the requirement of a high-energy barrier for data retention under zero/low electrical stimuli is incompatible with the demand of a low-energy barrier for fast switching under a modest programming voltage. One solution is to embed an atomic-level lever of localized electron-phonon interaction to autonomously reconfigure trap-site's barrier in accordance to the electron-occupancy of the site. Here we demonstrate an atomically levered resistance-switching memory built on locally flexible amorphous nanometallic thin films: charge detrapping can be triggered by a mechanical force, the fastest one being a plasmonic Lorentz force induced by a nearby electron or positron bunch passing in 10(-13) s. The observation provided the first real-time evidence of an electron-phonon interaction in action, which enables nanometallic memory to turn on at a subpicosecond speed yet retain long-term memory, thus suitable for universal memory and other nanoelectron applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.