Abstract

The well-known and general “compressibility theorem” for pure substances relates κT =−(∂ ln V/∂p)N,T to a spatial integral involving the pair correlation function g(2). The isochoric inherent structure formalism for condensed phases separates g(2) into two fundamentally distinct contributions: a generally anharmonic vibrational part, and a structural relaxation part. Only the former determines κT for low-temperature crystals, but both operate in the liquid phase. As a supercooled liquid passes downward in temperature through a glass transition, the structural contribution to κT switches off to produce the experimentally familiar drop in this quantity. The Kirkwood–Buff solution theory forms the starting point for extension to mixtures, with electroneutrality conditions creating simplifications in the case of ionic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.