Abstract

Angle-resolved photoemission spectroscopy (ARPES) is typically used to study only the occupied electronic band structure of a material. Here we use laser-based ARPES to observe a feature in bismuth-based superconductors that, in contrast, is related to the unoccupied states. Specifically, we observe a dispersive suppression of intensity cutting across the valence band, which, when compared with relativistic one-step calculations, can be traced to two final-state gaps in the bands 6 eV above the Fermi level. This finding opens up possibilities to bring the ultra-high momentum resolution of existing laser-ARPES instruments to the unoccupied electron states. For cases where the final-state gap is not the object of study, we find that its effects can be made to vanish under certain experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call