Abstract

AbstractThe origin of the Brγ-line emission in Herbig Ae/Be stars is still an open question and might be related e.g., to a disc wind or the stellar magnetosphere. The study of the continuum and Brγ-emitting region of Herbig Ae/Be stars with high-spectral and high-spatial resolution gives great insights into the sub-au scale hydrogen gas distribution.We observed the Herbig Be star MWC 120 with the VLTI/AMBER instrument in different spectral channels across the Brγ line with a spectral resolution of R~1500. Using radiative transfer modeling we found a radius of the line emitting region of ~0.4 au that is only two times smaller than the K-band continuum region. This is consistent with a disc wind scenario rather than an origin of magnetospheric emission.We present near-infrared AMBER (R~12000) observations of the Herbig B[e] star MWC297 in the Brγ-line. We found that the near-infrared continuum emission is ~3.6 times more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.