Abstract

Binaries provide empirical key constraints for star formation theories, like the overall binary fraction, mass ratio distribution and the separation distribution. They play a crucial role to calibrate the output of theoretical models, like absolute magnitudes, colors and effective temperature depending on mass, metallicity and age. We present first results of our on-going high-resolution imaging survey of late type brown dwarfs. The survey aims at resolving tight brown dwarf binary systems to better constrain the T dwarf binary fraction. We intent to follow-up the individual binaries to determine orbital parameters. Using NACO at the VLT we performed AO-assisted near-infrared observations of SDSS J2052-1609. High-spatial resolution images of the T1 dwarf were obtained in H and Ks filters. We resolved SDSS J2052-1609 into a binary system with a separation of 0.101" \pm 0.001". Archival data from HST/NICMOS taken one year previous to our observations proves the components to be co-moving. Using the flux ratio between the components we infer J, H and Ks magnitudes for the resolved system. From the near-IR colors we estimate spectral types of T1 +1 -4 and T2.5 \pm 1 for component A and B, respectively. A first estimate of the total system mass yields Mtot > 78 Mjup, assuming a circular orbit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call