Abstract
Understanding the formation processes of nitrous acid (HONO) is crucial due to its role as a primary source of hydroxyl radicals (OH) in the urban atmosphere and its involvement in haze events. In this study, we propose a new pathway for HONO formation via the UVA-light-promoted photosensitized conversion of nitrogen dioxide (NO2) in the presence of ammonia (NH3) and polycyclic aromatic hydrocarbons (PAHs, common compounds in urban grime). This new mechanism differs from the traditional mechanism, as it does not require the formation of the NO2 dimer. Instead, the enhanced electronic interaction between the UVA-light excited triplet state of PAHs and NO2-H2O/NO2-NH3-H2O significantly reduces the energy barrier and facilitates the exothermic formation of HONO from monomeric NO2. Furthermore, the performed experiments confirmed our theoretical findings and revealed that the synergistic effect from light-excited PAHs and NH3 boosts the HONO formation with determined HONO fluxes of 3.6 × 1010 molecules cm-2 s-1 at 60% relative humidity (RH) higher than any previously reported HONO fluxes. Intriguingly, light-induced NO2 to HONO conversion yield on authentic urban grime in presence of NH3 is unprecedented 130% at 60% RH due to the role of NH3 acting as a hydrogen carrier, facilitating the transfer of hydrogen from H2O to NO2. These results show that NH3-assisted UVA-light-induced NO2 to HONO conversion on urban surfaces can be a dominant source of HONO in the metropolitan area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.