Abstract

Packet-based optical access ring is becoming a promising solution in metropolitan networks. Its performance depends mainly on how optical resource sharing takes place among the different competing access nodes. This network architecture has mostly been explored with regard to synchronous transmission (i.e., slotted WDM ring). However, in this article we focus on the performance of asynchronous transmission-based networks with variable packet sizes. We investigate the fairness issue that is likely to arise between upstream and downstream nodes sharing a common data channel. Furthermore, we show that sharing the channel's available bandwidth fairly but arbitrarily between access nodes, as in slotted WDM rings, does not resolve the fairness problem in asynchronous systems. In this regard, we exhibit the inherent limitations of the token bucket access rate-based algorithm once applied to asynchronous transmission bus-based networks. To alleviate the aforementioned problem, we devise a new strategy called traffic control architecture using remote descriptors (TCARD). The proposed solution is based on a preventive mechanism to grant access to the shared resource. As illustrated in the article, the proposed solution alleviates performance degradation and resource underutilization while achieving fairness among bus nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.