Abstract

Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. They are widely used as proxies for studying past climate changes, e.g., in isotope records from ice cores and speleothems. Here, we present a new isotopic dataset of both near-surface vapour and ocean surface water from the North Pole to Antarctica, continuously measured from a research vessel throughout the Atlantic and Arctic Oceans during a period of two years. Our observations contribute to a better understanding and modelling of water isotopic composition. The observations reveal that the vapour deuterium excess within the atmospheric boundary layer is not modulated by wind speed, contrary to the commonly used theory, but controlled by relative humidity and sea surface temperature only. In sea ice covered regions, the sublimation of deposited snow on sea ice is a key process controlling the local water vapour isotopic composition.

Highlights

  • Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate

  • Similar extreme isotopic values are reported in August 2016 for a partial sea ice coverage, while the vessel was located in the vicinity of the Greenland ice sheet, close to the outlet of the Nioghalvfjerdsbrae glacier

  • Under the assumption that the measured d-excess values are caused by kinetic fractionation occurring during local oceanic evaporation, our results indicate that these fractionation processes are independent of the concurrent wind speed

Read more

Summary

Introduction

Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. Applying their theoretical concept to the Earth’s global water cycle, MJ79 introduced the so-called “closure assumption”, assuming an equality of the isotopic composition of the net evaporated flux and the initial moist air above the ocean surface According to this model, the strength of the d-excess signal in vapour is related to the relative humidity of the near-surface air with respect to the saturation vapour pressure at the ocean surface (RHsea), as well as to the sea surface temperature (SST). The theoretical considerations by MJ79 led to different interpretations of past d-excess variations recorded in polar ice cores They have been used as proxies of changes of the moisture source relative humidity[9] or SST10–12. Current understanding of the impact of sea ice on the vapour isotopic composition is, still limited by the number of observations available in sea ice covered areas[24,25]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.