Abstract

We report a method that combines measured solid-state NMR chemical shifts and first principles calculations to resolve the crystal structure of a powdered crystalline solid to within 0.13 A of the known structure. The validity of this process is confirmed by comparing the DFT calculated chemical shifts with the experimentally measured shifts, where we observe a substantial improvement in the agreement between the calculations and experiments before and after the DFT structure optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.