Abstract
Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.