Abstract

For a graph G(V,E) that models a facility or a multi-processor network, detection devices can be placed at vertices so as to identify the location of an intruder such as a thief or fire or saboteur or a faulty processor. Resolving-power dominating sets are of interest in electric networks when the latter helps in the detection of an intruder/fault at a vertex. We define a set S⊆V to be a resolving-power dominating set of G if it is resolving as well as a power-dominating set. The minimum cardinality of S is called resolving-power domination number. In this paper, we show that the problem is NP-complete for arbitrary graphs and that it remains NP-complete even when restricted to bipartite graphs. We provide lower bounds for the resolving-power domination number for trees and identify classes of trees that attain the lower bound. We also solve the problem for complete binary trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.