Abstract

In this study, one- and two-dimensional NMR experiments are applied to uniformly (15)N-enriched synthetic elastin, a recombinant human tropoelastin that has been cross-linked to form an elastic hydrogel. Hydrated elastin is characterized by large segments that undergo "liquid-like" motions that limit the efficiency of cross-polarization. The refocused insensitive nuclei enhanced by polarization transfer experiment is used to target these extensive, mobile regions of this protein. Numerous peaks are detected in the backbone amide region of the protein, and their chemical shifts indicate the completely unstructured, "random coil" model for elastin is unlikely. Instead, more evidence is gathered that supports a characteristic ensemble of conformations in this rubber-like protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.