Abstract

Regional responses to inhaled toxicants are essential to understand the pathogenesis of lung disease under exposure to air pollution. We evaluated the effect of combined allergen sensitization and ozone exposure on eliciting spatial differences in lipid distribution in the mouse lung that may contribute to ozone-induced exacerbations in asthma. Lung lobes from male and female BALB/c mice were cryosectioned and acquired by high resolution mass spectrometry imaging (MSI). Processed MSI peak annotations were validated by LC-MS/MS data from scraped tissue slides and microdissected lung tissue. Images were normalized and segmented into clusters. Interestingly, segmented clusters overlapped with stained serial tissue sections, enabling statistical analysis across biological replicates for morphologically relevant lung regions. Spatially distinct lipids had higher overall degree of unsaturated fatty acids in distal lung regions compared to proximal regions. Furthermore, the airway and alveolar epithelium exhibited significantly decreased sphingolipid and glycerophospholipid abundance in females, but not in males. We demonstrate the potential role of lipid saturation in healthy lung function and highlight sex differences in regional lung lipid distribution following ozone exposure. Our study provides a framework for future MSI experiments capable of relative quantification across biological replicates and expansion to multiple sample types, including human tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.