Abstract

Abstract The East Scotia Ridge, situated in the South Atlantic, is the back-arc spreading centre to the intra-oceanic South Sandwich arc. Samples from the ridge show a wide diversity in erupted magma compositions. Segment E2, in the northern part of the ridge, has an axial topographic high, which contrasts with the rift-like topography common to most of the ridge. Lava compositions in the segment have been modelled by mixing of magmas derived from normal mid-ocean ridge basalt (N-MORB)-like mantle, a mantle plume component similar in composition to that sampled by Bouvet Island and mantle modified by addition of components from the subducting slab. The ‘Bouvet’-like plume signature has higher 87 Sr/ 86 Sr, 206 Pb/ 204 Pb, Nb/Yb, and lower 143 Nd/ 144 Nd and 4 He/ 3 He, than the local upper mantle. It can be traced geochemically from the Bouvet Island hot spot to segment E2, via the South American-Antarctic Ridge, which connects the Bouvet triple junction to the South Sandwich subduction system. Four samples dredged from segment E2 have 4 He/ 3 He ratios of 85 000–90 200 (8.5–8.0 R/R A , where) R/R A is the 4 He/ 3 He ratio normalized to air) and three wax core samples taken from the segment axis have values of 104 300, 101 560 and 176 620 (6.9, 7.1 and 4.1 R/R A ). These latter data are similar to values from the South American-Antarctic Ridge which have no discernable plume input. Whilst the dredge samples have a measurably lower 4 He/ 3 He ratio than the South American-Antarctic Ridge and samples from the segment axis, these He isotope data contrast with a dominant plume signature recorded by other petrogenetic tracers. This is interpreted to be due to re-melting of an entrained plume component, with an inherent low He concentration, incorporated into the E2 mantle. Helium depletion from the plume component can be seen to be a consequence of mantle processing and does not imply shallow-level degassing prior to entrainment within the upper-mantle-melting zone. As a consequence, He is characterized in the back-arc by values more similar to the upper mantle, whereas lithophile tracers are more influenced by the plume component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.