Abstract

Autocatalytic reactions, which are accelerated by their own product, can amplify small imbalances in the chiral distribution of starting materials. A particularly effective system is the alkylation of certain aldehydes by diisopropyl zinc, which becomes increasingly stereoselective as the chiral alkoxide product coordinates to unreacted zinc centers. Kawasaki et al. (p. [492][1], published online 26 March) show that the sense of enantioselection in this system can be influenced by a factor as subtle as chirality in an alcohol that arises only because two positions differ in having 12C and 13C atoms. Isotopically chiral ligands were carefully prepared by using methods that would avoid chiral contaminants, and each led to a distinct enantiomer with enantiomeric excesses exceeding 90%. [1]: /lookup/doi/10.1126/science.1170322

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.