Abstract

Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc β isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SignificanceThe roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.